
The modern CD
landscape

A peek into the
future of
pipelines

Your Presenters

Tracy Ragan, CEO & Co-founder,
DeployHub

Microservice Evangelist, Founding Board
Member Eclipse Foundation. Founding
Board member of the CD Foundation,

DevOps Institute Ambassador,
20+ DevOps Experience.

•
•

•

Takeaways

• Less need for branching and
merging code.

• Builds are shrinking.

• Releases are incremental.

• SCM is lost.

• New Landscape will be
developed.

We are taking our
applications and breaking
them into smaller pieces that
are built and released
independent of the “whole.”

Microservices
Vs. Monolithic

The role of version control

• Code is no longer thousands of lines long

• A microservice is more like an API, or smaller function
of code. Many developers working on a single API is
not as common as monolithic.

• Branching and Merging will not be as critical.

Less Branching and
Merging

Shifting Builds

• Builds are Different

• Smaller code means smaller builds, if at all.
Python is interpreted.

• Linking is done at runtime, not at compile/link
time.

• Builds will focus on creating a container.

Traditional Modern

DEV DEVPROD PROD

The Build Disappears

The compile/link step assembles the
complete ‘application’ package to pass
to Test and Prod. Library configuration
management decision making is done
here. This is the heart of CI.

Microservices are loosely
coupled and linked at runtime

via APIs. The concept of an
application is only ‘logical.’.

•Microservices are released independently.

•Smaller updates means more frequent updates.

•Smaller independent updates creates lots of workflows.

The Shift in
Release

Multiple Workflows
To manage many moving parts, each
microservice will have their own
repository and CD Workflow.
Orchestration of the CD process will
become increasingly critical.

Think Templates!

Reality of Workflows
Multiple Workflows for a Single Application

Software
Configuration
Management
• BOM Reports – tracking what went

into a build, or version of an
application.

• Difference Reports – what changed
between two application versions.

• Impact Analysis – how to we predict
the impact a single microservice will
have on other Applications running in
the cluster

Reality of Configuration
Navigating the Deathstar

Finding and
Sharing
Microservices

Disorganization of
services can make it
impossible to find and
reuse them.

Think Domain Driven
Design and organization.

Domain Driven Design
Organizing Your
Microservices
• Domain Driven Design is where you

are managing an architecture based
on the microservice ‘problem space.’

• To find and share microservices they
must be organized in a way that
meets the needs of your ENTIRE
organization, and allows for them to
be found and shared.

Think of
Applications in
a “logical” view.

There still there.

New Microservice Pipeline

Build
microservice

container
image

Continually track
service to application

configurations

Push a new
single

microservice
to the cluster

(Dev,Test,
Prod)

Collect Feedback

Configuration reporting
identifies impact.

CD Pipeline
for each

microservice

New Microservice Pipeline

Build
microservice

container
image

Collect Feedback

Configuration reporting
identifies impact.

Route the
Service

Talk to me…
LinkedIn: https://www.linkedin.com/in/tracy-ragan-oms/

Twitter: https://twitter.com/TracyRagan

Calendar: https://drift.me/tracyragan/meeting/coffeechat

Email: TracyRagan@DeployHub.com

Dig In at: DeployHub.com or Ortelius.io

https://www.linkedin.com/in/tracy-ragan-oms/
https://twitter.com/TracyRagan
https://drift.me/tracyragan/meeting/coffeechat
mailto:TracyRagan@DeployHub.com

