
Kubernetes Basics by Tracy Ragan on behalf of

the Continuous Delivery Foundation

About Tracy

Containers, microservices and Kubernetes

is a tsunami size wave of disruption from

our traditional ways of developing

software. As a result, the CD Landscape

will need tweaking to support a K8s CD

Pipeline. In this session we will explore

basic concepts of Kubernetes, containers

and microservices, and review how this

new architecture changes the traditional

CD Landscape. We will look at changes

occurring now, what the future may look

like including the potential demise of the

Dev, Test, Prod waterfall practice.

Synopsis

Tracy Ragan is CEO and Co-Founder of

DeployHub. DeployHub is the first microservice

management platform designed to facilitate the

sharing, relationship mapping and deployments of

microservices. Tracy is expert in configuration

management and pipeline life cycle practices with a

hyper focus on microservices and cloud native

architecture. She currently serves as a board

member of the Continuous Delivery Foundation

(CDF) where she is the elected General Member

Representative.

http://www.deployhub.com/
file://192.168.3.95/hotwheelsbig/shared/docs/Marketing 2020/cd.foundation

Key Takeaways

Kubernetes and microservices are big shift.

For most organizations, microservices will have

their own repository and workflows. CD tools

will need to support workflow templates.

Configuration management will be lost as

large monolithic builds are replaced or non-

existence. Link decision making is done at

runtime – not by a build manager.

Organizing microservices into Domains

becomes critical for sharing and re-use.

Library Management and Security moves to

containers.

A Tsunami

In other words, we will need to surf this wave into

a new form of software development.

The Modern Architecture of containers,

Kubernetes and microservices is a massive shift

from monolithic practices. It will impact:

1) The way we develop software.

2) The way we deliver software and our CI/CD

Pipeline.

3) The way we manage and monitor our ‘data

center.’

The Skills Gap & How to Grow your Business

Let’s Talk

Kubernetes

Kubernetes Container

Orchestration:

An open source platform

from Google for

orchestrating containers

across clusters of servers

providing auto scaling and

fault tolerance.

Containers and Docker:

A container is a standard

unit of software that

packages up code and all

dependencies so the

application runs quickly

and reliably.

Microservices:

An architectural style that

structures an application as a

collection of loosely coupled

services.

In a microservices architecture,

services are fine-grained and

independently deployable.

From the Top

A container provides an
isolated context in

which an application,
together with its

environment can run.

A container provides an isolated
context in which an application,
together with its environment
can run.

• Need to be managed.

• Networking is hard.

• Must scheduled, distributed and load balanced.

• Data must persist somewhere.

Why Kubernetes and Not Just Containers?

Kubernetes Orchestration

A container provides an
isolated context in

which an application,
together with its

environment can run.

Kubernetes ensures that the

cluster continues to serve users

no matter how its environment is

altered, with minimal intervention

from operations teams.

Self-Healing
• Finds and restarts failed containers.

• Finds and reschedules failed Nodes.

• Destroys unresponsive containers.

Nodes are a VM for Pods.

Kubernetes Parts and Pieces

A container provides an
isolated context in

which an application,
together with its

environment can run.

“Pods run your containers. There

is at least one container for every

Pod.

The Pod controls the execution of

that container. When the

container exit, the pod dies too.”

Phippy Goes to the Zoo –A Kubernetes

Story, by Matt Butcher & Karen Chu,

Illustrated by Bailey Beougher, Renee

French

Pods and Nodes

Kubernetes Cluster

A container provides an
isolated context in

which an application,
together with its

environment can run.

Node

POD POD

Container

Container

Container

Container

Node

POD POD

Container

Container

Container

Container

Node

POD POD

Container

Container

Container

Container

Node

POD POD

Container

Container

Container

Container

Node

POD POD

Container

Container

Container

Container

Kubernetes Parts and Pieces

A container provides an
isolated context in

which an application,
together with its

environment can run.

Replica Sets

ReplicaSet ensures that a set of identically configured Pods are running at the desired replica

count. If a Pod drops off, the ReplicaSet brings a new one online as a replacement.”

Phippy Goes to the Zoo –A Kubernetes Story, by Matt Butcher & Karen Chu, Illustrated by Bailey Beougher,

Renee French

Kubernetes Parts and Pieces
DaemonSets

DaemonSets provide a way to ensure that a copy of a Pod is running on every node in a cluster.

As a cluster grows and shrinks, the DaemonSets spreads these specially labeled Pods across all of the

nodes.”

Phippy Goes to the Zoo –A Kubernetes Story, by Matt Butcher & Karen Chu, Illustrated by Bailey Beougher, Renee French

Kubernetes Parts and Pieces
Ingresses

“Ingresses provide a way to declare that traffic ought to be channeled from the outside of the cluster into

destination points within the cluster. One single external Ingress point can accept traffic destined to

many different internal services.”

Phippy Goes to the Zoo –A Kubernetes Story, by Matt Butcher & Karen Chu, Illustrated by Bailey Beougher, Renee French

Kubernetes Parts and Pieces
Custom Resource Definitions

CRDs provide an extension mechanism that cluster operators and developers can use to create their own

resource types.“

Phippy Goes to the Zoo –A Kubernetes Story, by Matt Butcher & Karen Chu, Illustrated by Bailey Beougher, Renee French

And Then There are Microservices

Microservices are a software

development technique—a variant of

the service-oriented architecture

architectural style that structures an

application as a collection of loosely

coupled services. In a microservices

architecture, services are fine-grained

and the protocols are lightweight.”

Wikipedia

APIAPI APIAPI

API

API
API API

API

API

API

Loosely Coupled

Your New Challenge – The Death Star

DEV PROD

DEV PROD

Microservices CI/CD

The Skills Gap & How to Grow your Business

Let’s Talk CD

Landscape

CD Landscape

Change Happens

Shifting to a modern architecture will

disrupt our traditional CI/CD pipeline.

Why is the CI/CD process disrupted?

Microservices are deployed

independently and that change impacts

everything.

Microservices and CD

The key to understanding microservices

is to think ‘functions.’ With a

microservice environment the concept

of an ‘application’ goes away. It is

replaced by a grouping of loosely

coupled services connected via APIs at

runtime, running inside of containers,

nodes and pods.

Microservices are immutable. You don’t

‘copy over’ the old one, you deploy a

new version to the cluster and manage

them with Labels.

Continuous Delivery Orchestration (CD)

Monolithic:

Continuous Delivery auto executes workflow processes between

development, testing, and production orchestrating external tools

to get the job done. Continuous Delivery calls on all players in the

lifecycle process to execute in the correct order and centralizes

their logs.

Microservices:

Because microservices are independently deployed, most

organizations moving to a microservice architecture tell us they

use a single pipeline workflow for each microservice. This means

you are going to have hundreds if not thousands of workflows.

CD tools will need to include the ability to template workflows

allowing a fix in a shared template to be applied to all child

workflows. Look for ‘event driven’ solutions to enter the market.

Changes in the CD Pipeline

Shifting Configuration

Source Code

Version

Repository

Monolithic CI/CD

Compile and Link

DEV PROD

DEV PROD

Microservices CI/CD

Microservice

Version

Repository

API Link

Microservices CI/CD

DEV

DEV Prod

Prod

Builds – Compile/Link

Monolithic:

Executes a serial process for calling compilers and linkers to

translate source code into binaries (Jar, War, Ear, .Exe, .dlls,

docker images). Common languages that support the build logic

includes Make, Ant, Maven, Meister, NPM, PIP, and Docker Build.

Microservices:

A build of a microservice will involve creating a container image

and resolving the dependencies needed for the container to run.

You can think of a container image to be our new binary. This will

be a relatively simple step and not involve a monolithic

compile/link of an entire application. It will only involve a single

microservice. Linking is done at runtime with the restful API call

coded into the microservice itself.

Changes in the Build

Continuous Integration (CI)

Monolithic:

CI is the triggered process of pulling code and libraries from

version control and executing a Build based on a defined ‘quiet

time.’ This process improved development by ensuring that code

changes were integrated as frequently as possible to prevent

broken builds, thus the term continuous integration.

Microservices:

Continuous Integration was originally adopted to keep us re-

compiling and linking our code as frequently as possible in order

to prevent the build from breaking. The goal was to get to a clean

’10-minute build’ or less. With microservices, you are only

building a single ‘function.’ This means that an integration build is

no longer needed. CI will eventually go away, but the process of

managing a continuous delivery pipeline will remain important with

a step that creates the container.

Changes in CI

Artifact (Binary) Repository

Monolithic:

Originally built around Maven, an artifact repository provides a

central location for publishing jar files, node JS Packages, Java

scripts packages, docker images, python modules. At the point in

time where you run your build, the package manager (maven,

NPM, PIP) will refer to the artifact repository to perform the

dependency management for tracking transitive dependencies.

Microservices:

As we move away from monolithic builds, these solutions need to

scale build hundreds of containers where container specific

dependencies will be resolved.

Changes in Artifact Repositories

Software Configuration Management (SCM)

Monolithic:

The build process is the central tool for performing configuration

management. The build performs configuration management by

pulling code from version control based on a ‘trunk’ or ‘branch. A

Software Bill of Material can be created to show all artifacts that

were used to create the application.

Microservices:

‘Builds’ as we know them go away in a microservice pipeline. For

the most part, the version and build configuration shifts to runtime

with microservices. While the container image has a configuration,

the broader picture of the configuration happens at run-time in the

cluster via the APIs. New tools will enter the market to track

configurations of microservices.

Changes in SCM

Domain Driven Design

Monolithic:

Does not exist.

Microservices:

SCM will begin to bring in the concept of Domain Driven Design

where you are managing an architecture based on the

microservice ‘problem space.’ New tooling will enter the market to

help with managing your Domains, your logical view of your

application and to track versions of applications to versions of

services. In general, SCM will become more challenging as we

move away from resolving all dependencies at the compile/link

step and must track more of it across the pipeline.

Changes in the Use of Domains

https://www.deployhub.com/microservices-domain-driven-design/

DevSecOps

Monolithic:

Security solutions allow you to define or follow a specific set of

standards. They include code scanning, container scanning and

monitoring.

Microservices:

Security solutions will shift further ‘left’ adding more scanning

around the creation of containers. As containers are deployed,

security tools will begin to focus on preventing known security

vulnerabilities and open source licensing violations from making it

to production.

Changes in Security

The Skills Gap & How to Grow your Business

Conclusion

Modern Architecture is disrupting business

as usual. A new way of running software

has emerged.

This new modern architecture directly

impacts the way we write and deliver

software solutions.

Skilling up now is more important than

ever.

