
DevOps Testing
The Primary Key to DevOps and Continuous Delivery

By Marc Hornbeek, “DevOps_The_Gray”

DevOps testing is important to Dev and Ops for the same reasons DevOps is important to Dev
and Ops.

As indicated in State of DevOps Report1, when implemented according to best practices, DevOps
delivers major and simultaneous benefits of dramatically improved agility, stability, efficiency, quality,
security and employee satisfaction.

While some benefits can be achieved at the expense of others, benefits cannot be achieved altogether
without DevOps test engineering. You simply cannot get the impressive results of DevOps and contin-
uous delivery without engineering testing to fit the rapid pace of DevOps! It simply won’t work. Sure,
you can put in place some new tools, automate some more tests, and make some local improvements
to different portions of your pipeline, without implementing a complete DevOps test strategy.

A comprehensive test strategy in which testing is fully integrated and balanced across the end-to-end
Dev-through-Ops pipeline, is essential to realize the full benefits of any of The Three Ways of DevOps
- continuous flow, feedback and improvement, as described in the Phoenix Project2 and The DevOps
Handbook3.

1 Why is Testing
Important to
Dev and Ops?

While some benefits can be achieved at the expense of others, benefits
cannot be achieved altogether without DevOps test engineering.

It can be said DevOps test engineering is the “essential” ingredient that enables DevOps because the ver-
dict data from properly engineered testing at each stage in the pipeline is essential for assessing the
artifacts produced in each stage. Assessment data from tests are essential to promote artifacts to the
next stage in the pipeline without causing bottlenecks.

The old waterfall idea in which the bulk of testing is the job of an “independent” QA team, performing
tests after the development phase, but before release, simply does not work in the world of DevOps.
With software changes happening at the speed of DevOps, everyone in a cross-functional team must
assume responsibility for the quality of the entire product, not just the component they are
working on.

To be a successful Dev, QA or Ops individual or leader, you must understand the fundamentals of con-
tinuous testing and DevOps test engineering best practices. Without that knowledge you will fall into
the trap of implementing local optimizations which fall short of accomplishing an effective end-to-end
continuous delivery pipeline.

Under DevOps, everyone is a DevOps test engineer!

DevOps test engineering is the “essential” ingredient that enables DevOps

DevOps testing is different than traditional QA!

Quality guru W. Edwards Deming understood the fundamental difference long before DevOps
became a movement “Quality is Everyone’s responsibility” and “You cannot inspect quality into
a product”.4

Traditional QA testing is a waterfall process in which a distinct phase following software develop-
ment is conducted by an SQA test team that is “independent” of the development team. The idea
was espoused by Glenford Myers in his seminal books “Software Reliability – Principles and Prac-
tices” and “The Art of Software Testing” published in 1976 and 1979 respectively.5.6 According to
Myers’ “4th Axiom [of testing] “It is impossible to test your own program”. Myers argued that pro-
grammers shouldn’t do any testing, even unit testing of their own code. He considered it a “conflict
of consciousness” to assume a mental role to find defects for the software that the same person
designed to work.

2 What is the
Difference Between
DevOps Testing and
Traditional Testing?

“Quality is everyone’s responsibility.”
 Dr. W. Edwards Deming

Focus on customer relevant defects, not quantity of defects.

While the application of Myer’s 4th axiom to unit testing was not followed by most practitioners in
the software industry, the idea of independent software functional and system level testing has been
a widely accepted practice for many years. The underlying rationale is that it is “impossible” for the
same person (the developer) to objectively test his/her own code due to the inherent bias to want the
code to work, while a good QA tester must have the opposite attitude to want to uncover bugs in the
code. If you follow this logic only “unusual” developers would be able to perform both roles success-
fully and therefore building a team based on this rare personal quality is essentially not practical.

Despite the logic of the “independent QA test” concept, many very complex software projects with-
out an independent QA test team resulted in extremely high-quality products. There are many high
quality open source and commercial software products that had no independent test organization
behind each release version. Meanwhile there are countless examples of software projects that had
massive independent test resources that resulted in products that failed miserably. How can this
be? Perhaps it is not “who” is doing the test that matters but rather it is the strategy used for testing
that is important.7

Testing maturity is a key differentiator of best practices for DevOps.8 Many organizations automate
their integration, build and delivery processes, but still have trouble with the subtleties of test de-
sign, as well as integrating with test orchestration and automation tools and frameworks. There is a
vital role for testing engineering expertise, test design, test automation and test case development
with DevOps.

From QA to

Continuous Testing

OLD WAY
NEW WAY

DevOps test engineering requires a complete re-think of software QA test strategies to align with
Dev-through-Ops pipeline stages. Fortunately, best practices for DevOps testing are available and can
be learned and applied to any product or service. There are five tenets that underlie the best practices
for DevOps test best practices indicated in the diagram below.

3 What are the
Best Practices of
DevOps Testing?

CT Tenets

Fail Often

Test Fast

Shift Left

RelevanceFail Early

 Shift Left: Conduct each test as early in the pipeline as possible
 Fail Early: Arrange the tests so that the most likely problems are

found in the earliest possible stage in the DevOps pipeline
 Fail Often: Run tests frequently and with many different conditions
 Test Fast: Arrange tests to run in quick cycles.
 Relevance: Focus on the most important tests and results.

 DevOps test culture
 Continuous test strategies
 End-to-end test integration
 DevOps test infrastructures
 DevOps test frameworks
 DevOps-ready test tools
 Test creation
 Test Acceleration
 Test Analytics
 Microservices and Containers
 Database DevOps testing
 DevOps Security testing
 Continuous testing antipatterns
 Continuous Test Management
 Advanced continuous test topics

It is beyond the scope of this article to detail all DevOps test best practices. A summary of each of the
DevOps test best practice categories are described in the following paragraphs.

1. DevOps Test Culture

A fundamental trait that distinguishes DevOps testing culture is that responsibility for attaining high
quality software products is shared by everyone on a cross-functional team. Quality control occurs
as an integral part of every phase of the pipeline, and all team members are involved. Testing and
quality control is not something concentrated at the end of pipeline, by a separate group. Quality is
everyone’s concern. A continuous test strategy determines the amount and extent of testing activities
throughout the entire development, delivery and deployment process.10

DevOps test best practices can be categorized as follows:

To accomplish this everyone involved across the end-to-end pipeline takes responsibility
for testing and test results. Here are other characteristics of a DevOps Test Culture:

2. Continuous Test Strategy

The old waterfall V-Model test strategy in which large amounts of software changes are tested in a
“big bang’ test near the end of the software development process by an independent QA team does
not work with DevOps. In DevOps, small changes are tested incrementally by a cross-functional
team over all stages of the continuous delivery pipeline.

Agile test methodologies are more compatible with DevOps testing because with Agile small
changes are tested incrementally in by a cross-functional team. However Agile does not define the
infrastructure for continuous testing, the need to integrate continuous testing into a toolchain or
the methodologies for extending testing into deployment. Continuous test strategies required for
DevOps are more completely defined than with waterfall or Agile.

Continuous testing strategies include the integration of testing at all stages in the pipeline and
include strategies for testing during deployment such as A/B testing. Green/Blue deployments,
Canary testing and Chaos Monkey for testing the resiliency of the deployment infrastructure.

A culture of collaboration around tests and test results analysis is encouraged rath-
er than confrontation between testers that find failures and those who fix the code
to repair a failed test. Policies for test creation and test coverage are agreed by the
cross-functional team.

Leaders sponsor testing as a strategic element of their budgets and operations
rather than viewing testing as a cost to minimize. This includes budgeting time and
money for DevOps test training, test resources, test frameworks, test tools, test
management and establishing policies for assessments. The assignment of a DevOps
test architect is also a best practice. The test architect has an overall perspective of
DevOps test practices helps cross-functional teams understand and apply them.

Strong Dev teams embrace the creation of good tests and an analysis of test results.
Strong Ops teams are involved in cross-function test execution and planning.

Policies for test creation and test coverage are agreed by the cross-functional team.

3. End-to-End Test Integration

In DevOps, tests are integrated horizontally at each stage of the end-to-end pipeline, and vertically
at all layers of the continuous delivery toolchain and infrastructure. Each organization may have its
own definition of pipeline stages and vertical layers.

The example in the diagram below explains this category of DevOps test best practices.

In this situation, tests are conducted across the horizontal pipeline as follows:

 Prior to committing software changes into the integration or trunk branch pre-flight tests are
conducted on the software change integrated with the tip of the integration branch within a
private instance, to ensure the changes will not break the integration branch. Pre-Flight tests
include unit testing, static code analysis scanning, functional, regression and performance
tests. During this stage feature flags or toggles may be installed in the software and each
setting of the flag is verified to make sure the flags work. New automated tests that validate the
changed software are created and tested, for use in later stages of the pipeline and subsequent
regression tests.

 During the code commit stage, assessments are conducted on the committed code to validate

the pre-flight test results satisfy acceptance criteria for integration into the integration branch.

 During the build stage a select group of tests are run on each build to ensure the integrated
build satisfies build integration acceptance testing.

 During the code test stage functional and performance tests are conducted to ensure the

images resulting from the build or set of builds satisfy functional and performance assessment
criteria.

 During the regression stage a set of regression tests are conducted to ensure the images

resulting from the build or set of builds satisfy regression test assessment criteria.

 During the integrate packages stage a set of tests are conducted to ensure the image packages
resulting from the image packaging stage satisfy package assessment criteria.

 During the system test and regression stage the entire application consisting of one or more

packages from the integrate package stage are tested to ensure it satisfies system test and
regression package assessment criteria.

 During the delivery stage all software that will be is used to deploy the software is tested to

ensure it satisfied delivery test criterion.

In the example depicted in the diagram, tests are conducted across the vertical layers as follows:

 Infrastructure tests are conducted to verify the infrastructure variations for deployment satisfy
infrastructure assessment criterion.

 Orchestration and automation tests are conducted to verify the software that supports

orchestration and automation layers satisfy their assessment criterion.

 Monitoring and management tests are conducted to verify the software the supported
monitoring and management of the pipeline satisfy their assessment criterion.

4. DevOps Test Infrastructures

The underlying infrastructure for testing includes all configurations of hardware, software stacks
and tools that are necessary to operate tests sufficient for quality assurance of the application and
its deployment to production.

The application being tested may be a large monolithic application, 3-tier application configurations
or code packaged modularly in separate containers using service-oriented or micro-service oriented
architectures.

One of the key best practices for DevOps testing is that tests are to be conducted in a produc-
tion-equivalent test environment. This ensures tests cover all software configurations and use case
variations that the application is expected to operate in, once deployed to production. Therefore, it
is essential for the test infrastructure used for each stage to be a replica of production configuration
variations.

One of the key best practices for DevOps testing is that tests are
to be conducted in a production-equivalent test environment.

The target deployment and test infrastructure may require running software stacks on bare metal
servers, virtual machines or containers running in a private data center, cloud or multi-cloud envi-
ronments. It may require configuring one or more Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS) or Software-as-a-Service (SaaS) environments.

The variations may also require a variety of network, cluster, load-balancing, storage and database
configurations that the application will be used in during deployment and production use.

Disaster recovery and restoring service infrastructures and procedures may also need to be tested.

Many organizations find that it is too expensive to have dedicated replicas of all possible variations
of the infrastructure configurations available for testing prior to deployment.

A key best practice for DevOps is to arrange for an elastic infrastructure for testing. The ability to
stand-up and release (i.e. orchestrate) infrastructure configurations as needed during the pipeline
for use with specific tests is usually more feasible and cost efficient than dedicated infrastructures.
Typical techniques that are employed to orchestrate test environments include dynamic infrastruc-
ture configuration tools, infrastructure-as-code strategies, cloud services, Test-as-a-Service provid-
ers and use of tools to stand-up and release applications and test resources packaged in immutable
containers.

5. DevOps Test Frameworks

A DevOps test framework is a system operated within a continuous delivery toolchain that controls
the orchestration and automation of resources for test setup, test execution, and test results. Test
resources that a test framework supports may include tests, test tools, applications, test infrastruc-
tures, and test data. A test framework can be invoked, controlled and released through an Appli-
cation Programming Interface (API) so that it can be integrated into a DevOps continuous delivery
toolchain. Example features provided by test frameworks include capabilities to orchestrate the
test infrastructure, select tests, control the execution of tests, monitor tests in progress and report
test results, logs and verdict data.

6. Test Creation

There are a variety of test creation techniques and associated tools available to create high quality,
reliable tests. The most common test creation techniques are scripting, capture-replay tests, Key-
words, Behaviour-driven and Model-based test creation methods. Each of the methods vary in the
cost of tooling, complexity and ease of use. Test-driven development (TDD) is a method in which
the tests are created ahead of the code to be tested. TDD is most often applied for unit level tests
but may also be applied for functional testing. A key advantage of TDD is that it ensures working
tests are available for use in all pipeline stages. Without using TDD there is a tendency for the
creation of tests to fall behind the code. Another advantage of TDD is that tests are created without
the bias of knowing how the code was written…because it hasn’t been written yet.

A key best practice for DevOps is to arrange for
an elastic infrastructure for testing.

7. Test Acceleration

Faster continuous testing cycles are preferred because failing early and often is a DevOps goal.
There are multiple reasons for this, but it should be evident that faster tests reduce the wait time
to get results and since there are typically many development team members looking for results the
total developer time savings is huge for every minute of test time saved.11

There are many techniques used to accelerate tests such as employing vertical and horizontal scal-
ing of test.

8. DevOps-Ready Test Tools

To work well with a continuous delivery toolchain, test tools must provide capabilities to drive an
application under test and report results data needed to assess the verdict of a test. Examples of
tools may include unit test tools, functional test tools, protocol test tools, performance/load test
tools, API test tools, user interface test tools and database simulators. Test tools may be white box
tools, gray box tools and black box tools. To be DevOps-ready, the test tools need to easily inte-
grate into a test framework and toolchain and elastically scale on-demand vertically or horizontally,
to match the varying capacity and workload demands of tests of software changes going through
the continuous delivery pipeline. DevOps ready tools can be orchestrated, scaled, invoked, con-
trolled, and monitored from a API.

Resources, employing fail-fast test design techniques, test framework configurations that accelerate
test results monitoring, and test tool configurations.

9. Test Analytics

Fast continuous testing is counterproductive if the analysis of test results does not keep up with the
speed of testing. Unless test analysis is as fast as the tests, all that will happen is an accumulated
debt of test results to be analyzed resulting in, at best, no net gain in time savings and, at worse,
valuable results going overlooked and mass confusion that actually slows down the overall CI/CT
cycles.13

There are many techniques used to ensure test results analysis keeps up with accelerated tests. Test
design techniques, analysis tools built into test frameworks, test results dashboards, test results
analysers that run in parallel with the tests are some good examples.

10. Microservices and Containers

Software architected as micro-services and packaged in containers present both challenges and
opportunities for DevOps testing.

The microservices approach aims to produce well bounded, networked, service-oriented modules.
This is attractive to software application architectures because the individual micro-services can be
built and deployed as independent units. The smaller modules are easier and quicker to test com-
pared to large monolithic applications. Packaging a microservice into its own container is attractive
because the service can be deployed immutably across any number of infrastructures, scale easily
and can be reverted easily in the case of test failures.

From a testing point of view microservices introduce the requirement to validate the contract of
each services with any other services that use it. The independence of the microservice or any
inter-service dependencies need to be well tested. Performance and reliability considerations of
operating services over a network need to be verified. If the application changes affected microser-
vice, or dependent group of microservices need to be regression tested.

Containers offer the opportunity to package test resources in special test containers so they can be
conveniently and immutably invoked on-demand for testing changes with elastic scaling benefits.

11. Database DevOps Testing

A strategy is required to verify that changes to a database or changes to an application that uses a
database perform as expected, during each stage in the continuous delivery pipeline. Orchestration
of the infrastructure, the test framework, and the test creation strategies all need to consider the
database and the application that use it. Test data to validate changes need to be available at each
stage in the pipeline to avoid bottlenecks. Customer sensitive data needs to be obfuscated from
people involved in testing. Tools to replicate production level data volumes are needed to ensure
that the tests are conducted on a production equivalent dataset prior to deployment. Database
migration, replication and restore tools need to be tested also to ensure they can function quickly
enough to keep up with the speed of the DevOps continuous deployment pipeline cadence.

12. DevOps Security Testing

DevOps with Continuous Testing (CT), when implemented according to best practices, is an oppor-
tunity for organizations to systematically and affordably integrate security assurance into product
and service development. Using DevOps techniques, continuous security testing can be built into
software change and deployment operations.13 Many refer to the application of DevOps practices
to security assurance as “DevSecOps” or “Rugged DevOps.”

13. Continuous Testing Antipatterns

There are multiple antipatterns that arise in DevOps continuous testing because speed and quality
run into conflicts with each other. For example, Continuous Testing is a longevity test anti-pattern.
The pattern of quick test cycles prescribed by continuous testing appears to be a contrary anti-pat-
tern to the fundamental concept of long duration “longevity” testing. Fortunately, DevOps infra-
structures implemented according to best practices have a variety of complementary continuous
longevity testing patterns to choose from.14

14. Continuous Test Management

All the same requirements of test management for traditional QA testing apply to DevOps testing
also. Test planning, test guidelines, test code version management, and version management of test
results are some examples. A key difference with DevOps testing is the higher rate of changes. To
keep up with the rapid change cadence required for DevOps, all aspects of test management need
to be handled by tools that are well integrated into the continuous delivery pipeline and any test
framework being used for DevOps test automation. In addition, the test environment must be high-
ly stable because a failed test environment will break the continuous delivery pipeline.15

Design technical and business metrics to monitor the success of DevOps testing for technical con-
tinuous improvement and to justify business cases needed to implement those improvements.

15. Advanced Continuous Test Topics

Cognitive automation, machine learning, self-remediation, and predictive analysis are emerging
techniques for test automation. These techniques increase the ability to meet increased time-to-
market pressure with the right levels of quality to secure business outcomes. Adopting smarter au-
tomation solutions will be essential to cope with the emergence of smarter applications and smarter
products that demand an integrated, intelligent, and automated approach to testing this continu-
ously changing products in rapidly changing business environments.15

How Do I Get Started with DevOps Testing?

The primary key to success with DevOps is DevOps test engineering. As this article has explained,
DevOps testing is much more than automating tests or integrating a tool into the continuous
delivery tool chain. A methodical approach to realize effective and efficient DevOps testing is
recommended.

The DevOps Institute course DevOps Test Engineering (DTE)® provides a comprehensive learning
curriculum for DevOps testing as well as DevOps Test Engineer certification. Anyone involved in
DevOps leadership or DevOps practitioner in Dev, QA, Ops, InfoSec or project management can
benefit from the DTE course. Refer to the following link to learn more about the course or find an
accredited training provider:

www.devopsinstitute.com

Skill yourself and your team on DevOps testing. This likely involves formal training.

Engage a DevOps test consultant and appoint a DevOps test architect to conduct
an assessment of your current testing practices and define a recommended solution
roadmap.

The solution roadmap should define a test strategy for the product. The strategy
will define the test coverage strategy, how tests will be created, which tests will be
conducted at each stage of the continuous delivery pipeline, how test results will be
handled and metrics to monitor performance for testing. Select a pilot application.

Implement test infrastructure, test frameworks and tools according to the solution
roadmap.

Train cross functional team members on test creation methodologies and tools.

After a pilot project with a one product application and team, expand the implemen-
tation to more teams the team and applications.

Monitor progress and put in place continuous improvement procedures.

1.

2.

3.

4.

5.

6.

7.

References

1. State of DevOps Report by Puppet Labs, IT Revolution, DORA | June 2017
2. The Phoenix Project by Gene Kim, Kevin Behr, George Spafford | January 2013
3. The DevOps Handbook by Gene Kim, Patrick Debois, Jez Humble, John Willis | October 2016
4. Out of the crisis, W. Edwards Deming| 1986
5. Software Reliability – Principles and Practices, Glenford J. Myers| 1976
6. The Art of Software Testing, Glenford J. Myers| 1979
7. From QA to Continuous Testing, Marc Hornbeek| DevOps.com | February 2015
8. DevOps – it’s all about Continuous Testing, Marc Hornbeek| DevOps.com | February 2015
9. Seven Best Practices for Accelerating Continuous Testing, Marc Hornbeek| DOES 2015 |November 2015
10. DevOps Impact on Testing and Culture, Shirly Ronen-Harel| August 2015
11. Continuous Testing Accelerated, Marc Hornbeek| DevOps.com | March 2015
12. Test Results Analysis at the Speed of DevOps, Marc Hornbeek| DevOps.com | March 2015
13. DevOps Makes Security Assurance Affordable, Marc Hornbeek| DevOps.com | April 2015
14. Isn’t Continuous Testing a Longevity Test Anti-pattern?, Marc Hornbeek| DevOps.com | March 2015
15. Isn’t Continuous Testing a Longevity Test Anti-pattern?, Marc Hornbeek| DevOps.com | March 2015
16. Continuous Testing Stability, Marc Hornbeek| DevOps.com | April 2015
17. World Quality Report, 9th Edition, | 2017-2018

About the Author

Marc Hornbeek, also known as “DevOps_The_Gray”, is a DevOps consultant advisor, teacher,
mentor and author. Author of the Continuous Delivery Architect course and the DevOps Test
Engineering course for the www.DevOpsInstitute.com. Blogger on www.DevOps.com. Specialist
/ expert in DevOps maturity assessments, DevOps transformation roadmaps, Continuous Inte-
gration (CI), Continuous Test automation (CT), Continuous Delivery and Deployment (CD), Lab-as-
a-Service (LaaS), and DevOps cloud-native infrastructures. Awarded IEEE outstanding engineer,
Western USA. Senior IEEE member, 42 years. To learn more of Marc’s publications and services
refer to https://www.linkedin.com/in/marchornbeek/ and www.ConfinityConsulting.com.

