

Taming Data Science
Dragons with MLOps
and Kubernetes

In Praise of Data Science - Helping solve complex challenges

Clinical diagnostics

Citizen interaction

Financial fraud

Data Science - harnessing today's tech makes it possible

"Data scientists create business value when they quickly develop AI/MLthat value is only released when AI/ML runs securely in production"

Data Science - by the numbers

25%

Year over year increase in the use of AI in standard business processes*

63%

Revenue increases from AI adoption in the business units where their companies use AI*

\$98B

Projected worldwide spending on AI - 2023**

^{*}McKinsey – Global AI survey, November 2019
**IDC -- Worldwide AI spending guide, 2020

THE BIG BUT...

87%

...of data science projects never make it into production

80%

...of Analytics projects will not deliver business outcomes through 2022

77%

...of businesses report that "business adoption" of big data and AI initiatives continues to represent a big challenge

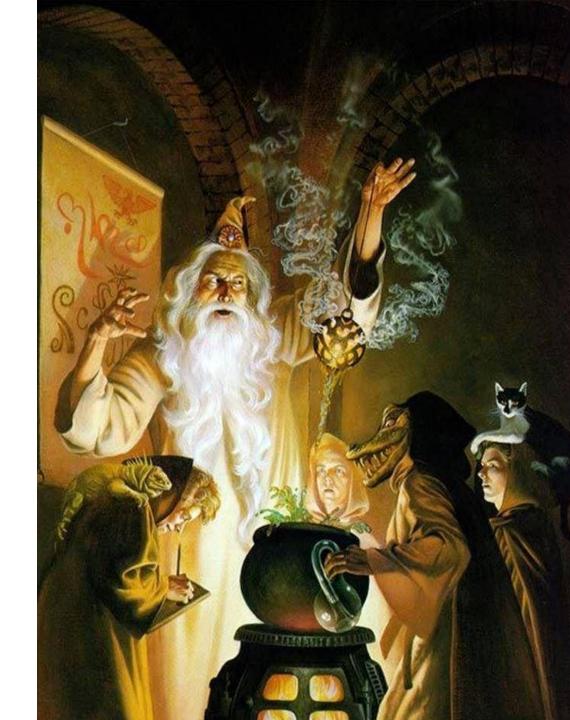
https://blogs.gartner.com/andrew_white/2019/01/03/our-top-data-and-analytics-predicts-for-2019/https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/http://newvantage.com/wp-content/uploads/2018/12/Big-Data-Executive-Survey-2019-Findings.pdf

Data Science - Business enabler or Hocus Pocus?

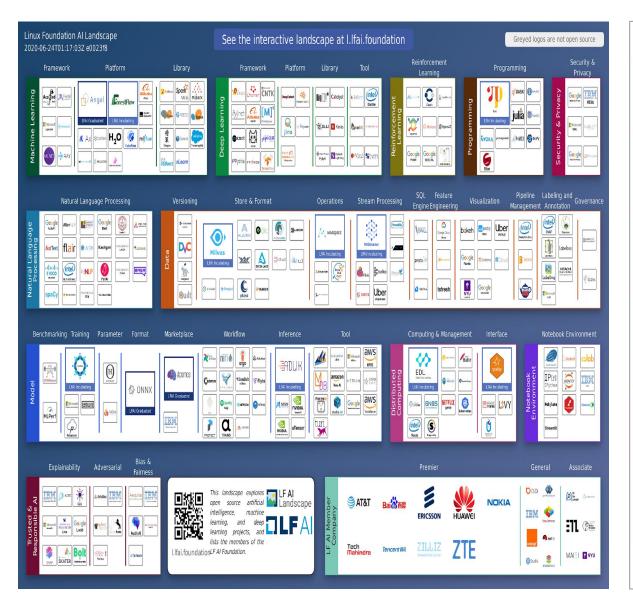
80%

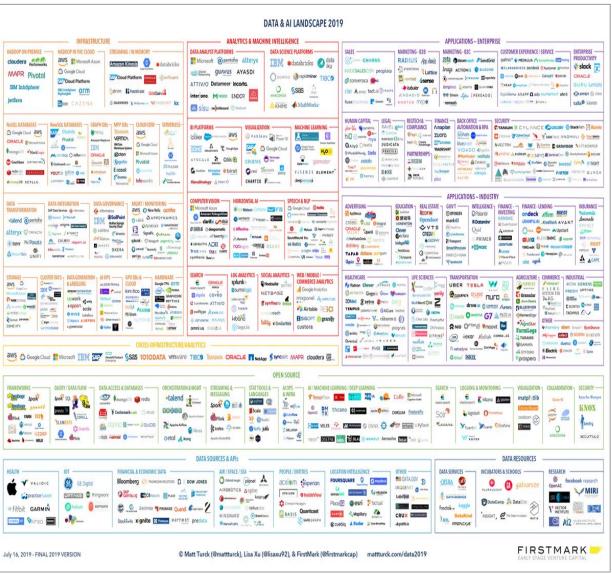
...of Al projects will...

"remain alchemy, run by wizards, whose talents will not scale in the organisation"

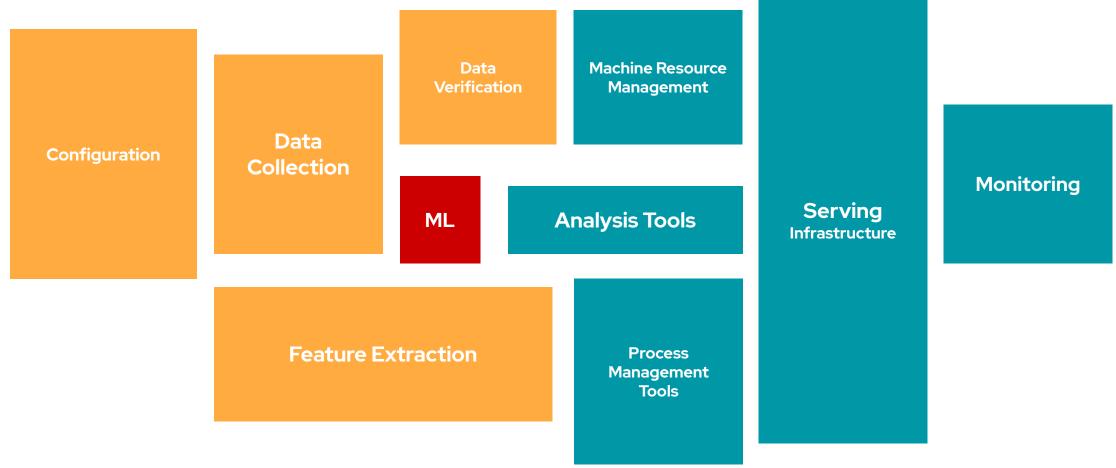


No shortage of product spells (sample list) ...



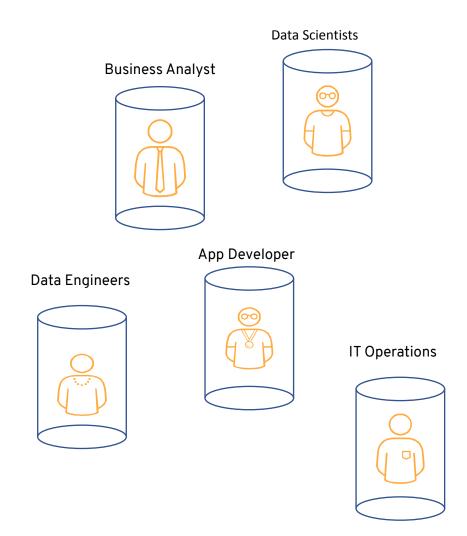


... with many potions

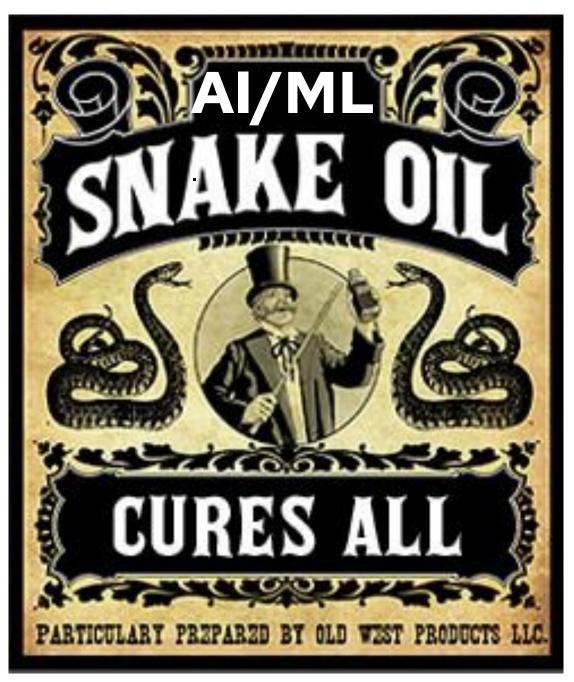


Provisioning; data collection, verification and analysis; data auditing, model monitoring, explainability, machine resource management

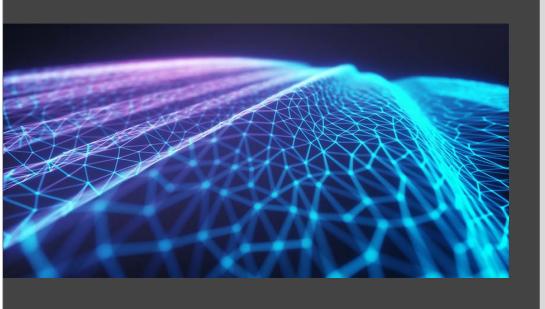
... and silos of sorcery



- Limited collaboration & model sharing
- Infrastructure provisioning
- Scale-out issues; resource blowouts
- Manual, error-prone handoffs
- Governance, compliance, security
- Lack of reuse, inconsistencies
- Complexities training, testing, retraining ML models for prediction accuracy



Dragon Taming: Essential Criteria



- Scalable, production-ready platform
- Automated, workflow-driven
- Built for collaboration and reuse

Scalable, production-ready platform

Containers and Kubernetes for Data Science Workloads

Agility

Respond quickly with automated compute resource management.

Portability

Develop and deploy

AI/ML models

consistently across

data center, edge, and
public clouds.

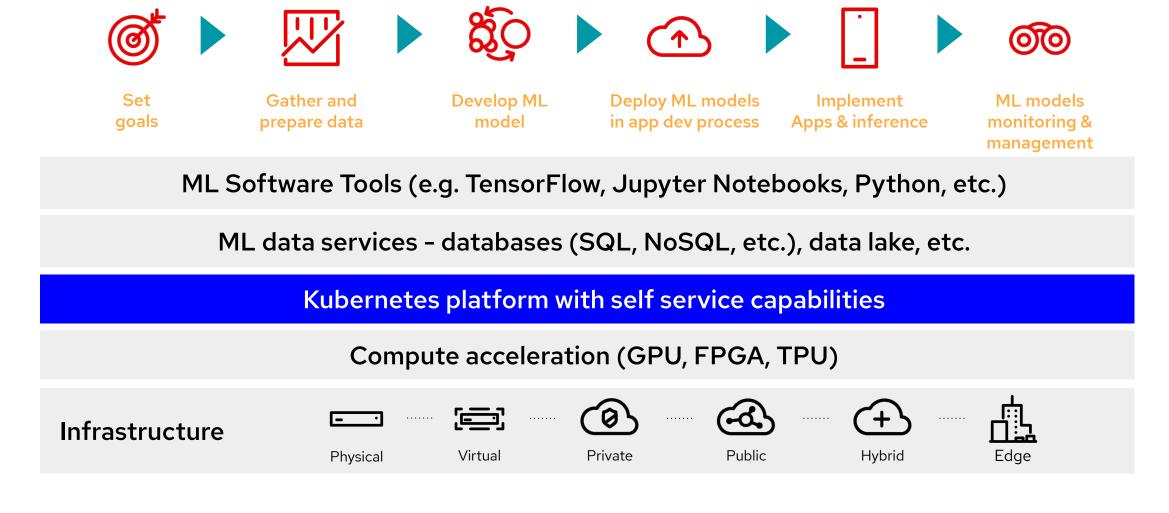
Flexibility

Provision AI/ML environments as and when you need them.

Scalability

Autoscaling and high availability of the AI/ML solution stack.

Scalable, production-ready platform



Sepsis detection with predictive analytics

"Our existing data infrastructure was designed for large-scale BI and reporting....We need to gather, analyze, and share real-time data from all our facilities so that life-saving action can be taken quickly"

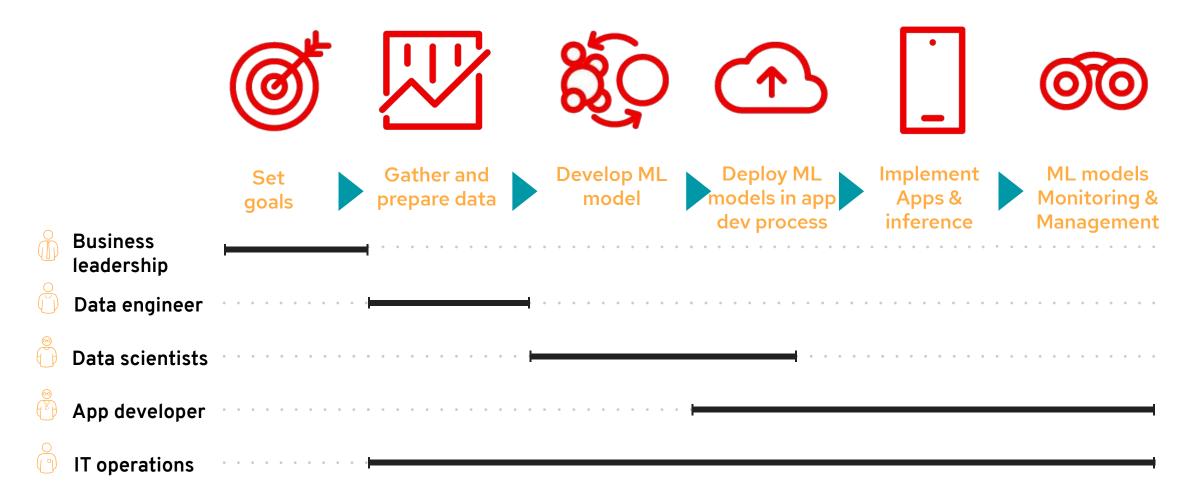
"To support our care providers with modern tools like ML and cloud computing, we needed a platform that is <u>flexible</u>, <u>scalable</u>, <u>and fast</u>"

VP & Chief Data Scientist

- Building clinician "trust"
- New insights from data
- 18 hours early warning
- 8,000 lives saved

Healthcare
Using data insights to save lives

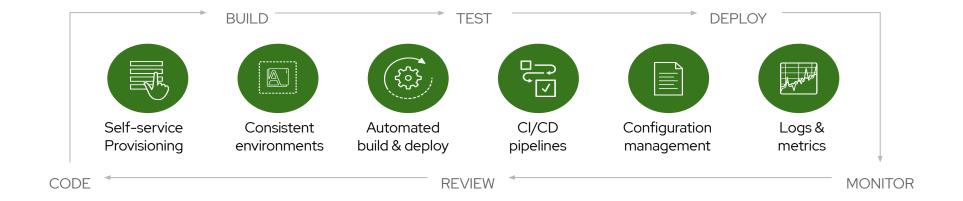
Scaleable, production-ready platform Supporting key stakeholders



Automated, workflow-driven

Open Data Science Platform Solution

Architected to leverage DevOps and continuous delivery

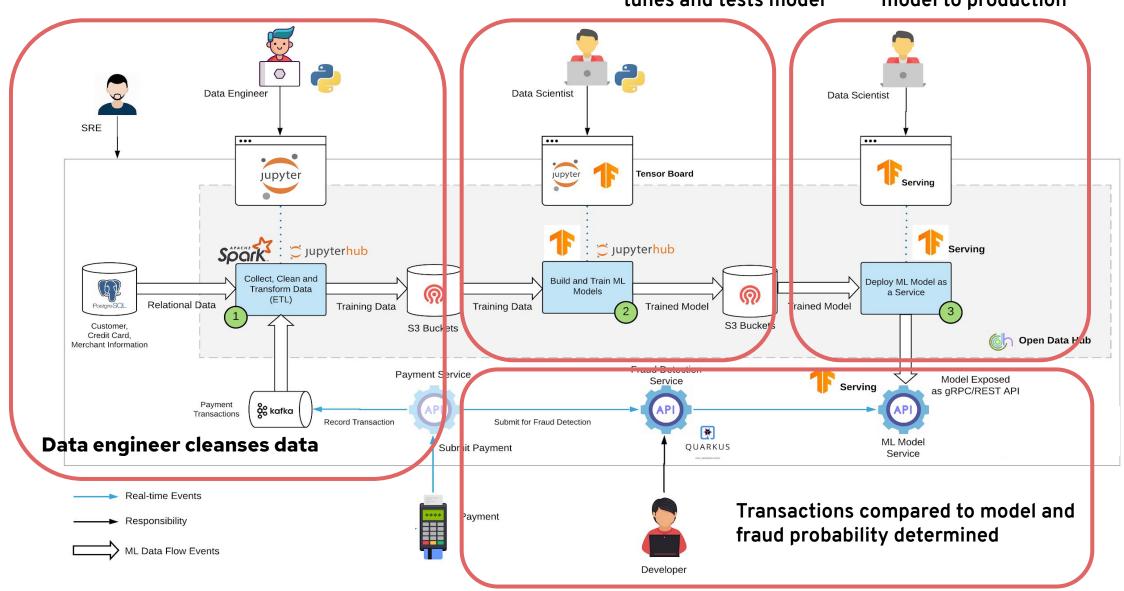


Kubernetes Platform

Automated, workflow-driven

End-to-end workflow - fraud example

Data scientist trains, tunes and tests model Data scientist pushes model to production



Automated, workflow-driven

Example Data Science Environment Before and After Platform Approach

Local PC Setup

Local admin access required

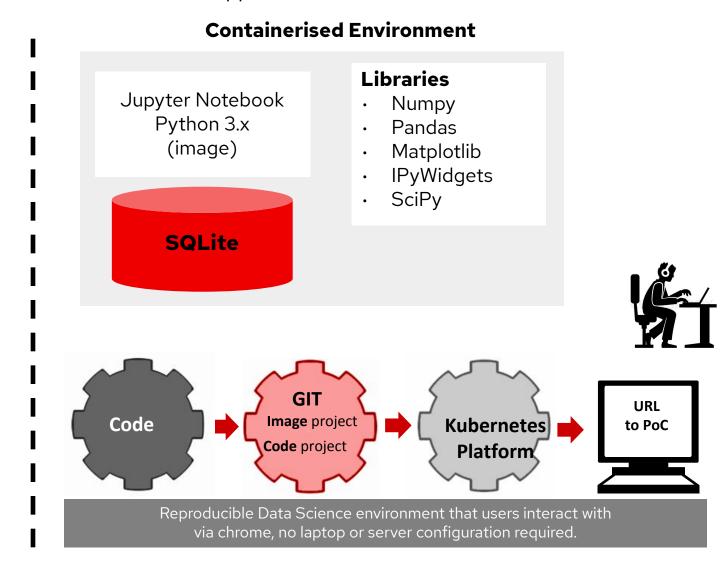
Access to latest source code

Jupyter Notebook Python 3.x (loaded onto PC – or setup on server)

> pip install required Anaconda libraries

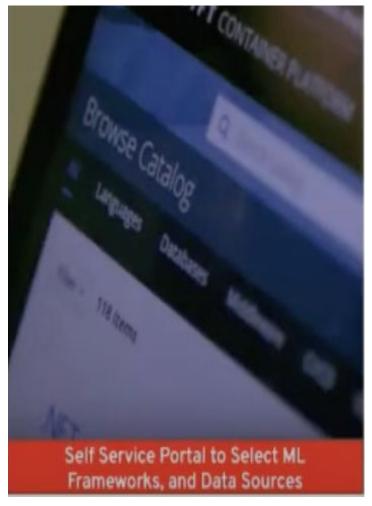
OS??

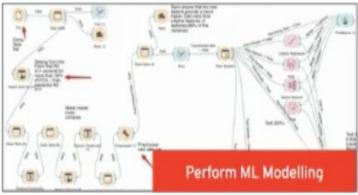
Complex setup requires data scientists to install software on laptops. No version control, high overhead.



Built for collaboration and reuse

"As a data scientist, I want a self-service cloud-like experience for my projects, where I can access a rich set of modelling frameworks, data, and computational resources, where I can **share and collaborate** with colleagues, and deliver my work into production, with speed, agility, and repeatability to drive business value"

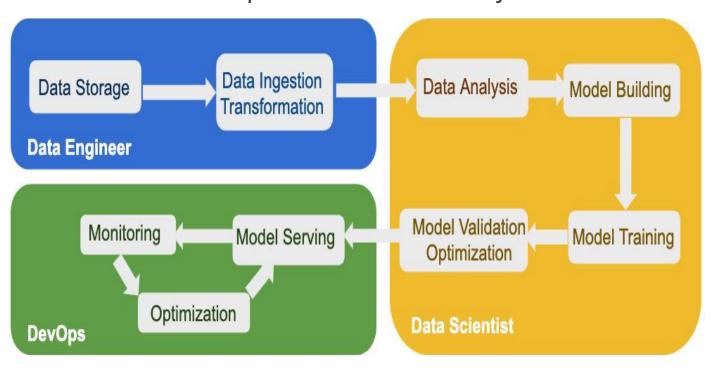




Built for collaboration and reuse

- Meta-project to integrate open source projects
- Collaboration between communities, vendors, user-enterprises, and academics
- Open source best practices (Kubeflow, Kafka, etc)
- Focus on integration, service abstraction, and continuity to reduce complexity
- Ensure reproducibility

The Open Data Hub Project



Open Data Hub Architecture:

https://opendatahub.io/docs/architecture.html

Built for collaboration and reuse

Open Data Hub Operator

DATA SCIENTIST

DATA SCIENTIST

DATA SCIENTIST

- Monitoring and alerting toolkit
- Used to diagnose problems

- Analytics platform for all metrics
- Query, visualize and alert on metrics

- Deploying machine learning models as micro-services
- Full model lifecycle management

- Unified analytics engine
- Large-scale data access

- Multi-user Jupyter
- Used for data science and research

- Distributed Object Store
- S3 Interface

- Distributed event streaming
- Pub/Sub Messaging

- Container-native workflow engine
- Declaratively deploy ML pipelines and models

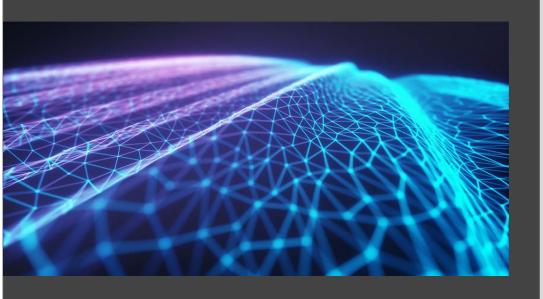
Noteworthy mentions

Dedicated to making deployments of machine learning (ML) workflows on Kubernetes simple, portable and scalable.

Open source project that provides a framework to create cloud-native CI/CD pipelines quickly. As a Kubernetes-native framework, Tekton makes it easier to deploy across hybrid cloud environments

Tekton

In Summary

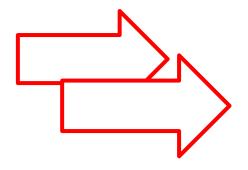


- Data Science enormous business potential
- Complex challenges and constraints
 - data deluge, science silo's, disparate technology
- Kubernetes and MLOps approach needed: reduce cost, accelerate delivery, increase skills

Taming Data Science Dragons with MLOps and Kubernetes

Scalable, Production-ready platform

Optimally scale data science across multiple environments
-- on-premise, cloud, edge



Automated, workflow-driven

Rapidly deploy AI models, integrating multiple technologies and processes

Collaborative, built for reuse

Unify data science teams,
developers and operations
towards accelerating business
outcomes

Pete Waterhouse Solution Specialist - AppDev Red Hat petew@redhat.com

THANK YOU!

Meet me in the Network Chat Lounge for questions

